量化交易之路:用Python做股票量化分析pdf扫描版[103MB]
下载higcharts插件放在static文件夹下
前端引入
<script src="/static/highcharts/highcharts.js"></script> <script src="/static/highcharts/modules/exporting.js"></script> <script src="/static/highcharts/modules/oldie.js"></script> <script src="/static/highcharts/highcharts-zh_CN.js"></script>
定义在页面中的位置
<div id="container" style="min-width:400px;height:400px"></div>
前端js
<script> var chart = Highcharts.chart('container', { chart: { type: 'line' }, title: { text: '日点击量和点赞量统计' }, subtitle: { text: '数据来源: terroristhouse.com' }, xAxis: { categories: {{ list_week_day|safe }} }, yAxis: { title: { text: '数量 (次)' } }, plotOptions: { line: { dataLabels: { // 开启数据标签 enabled: true }, // 关闭鼠标跟踪,对应的提示框、点击事件会失效 enableMouseTracking: false } }, series: [{ name: '点击量', data:{{ clicknum_list|safe }} }, { name: '点赞量', data: {{ praise_num_list|safe }} }] }); </script>
路由
# 点击量统计 re_path('article/click/', article.click,name='article/click/'),
后台方法
from blog.utils import function # 点击量 def click(request): recent_seven_days = function.recent_seven_days() list_week_day = recent_seven_days[::-1] # 进行倒序 clicknum_list = [] praise_num_list = [] # print(list_week_day) for v in list_week_day: click_num_obj = Praise.objects.filter(click_addtime=v,click_sort=1).aggregate(clicknum=Count('click_sort')) praise_num_obj = Praise.objects.filter(click_addtime=v,click_sort=0).aggregate(praise_num=Count('click_sort')) # print(click_num_obj['clicknum'],praise_num_obj['praise_num']) clicknum = int(click_num_obj['clicknum']) if (click_num_obj['clicknum'] is not None) else 0 praise_num = int(praise_num_obj['praise_num']) if (praise_num_obj['praise_num'] is not None) else 0 clicknum_list.append(clicknum) praise_num_list.append(praise_num) # print(clicknum_list) # data=[{ # 'name': '点击量', # 'data': clicknum_list # }, { # 'name': '点赞量', # 'data': praise_num_list # }] # num= [ '20190624', '20190625', '20190626', '20190627', '20190628', '20190629', '20190630'] return render(request,'article/click.html',locals())
应用目录下创建untils文件夹,并在其下创建function.py文件,用来获取最近七天日期
# 七天日期 def recent_seven_days():# 通过for 循环得到天数,如果想得到两周的时间,只需要把8改成15就可以了。 import datetime d = datetime.datetime.now()#2019-6-28 9:25:43.843164 lists = [] for i in range(1,8):#i:1-7 oneday = datetime.timedelta(days=i) #1 day, 0:00:00 2 days, 0:00:00 ... 7 days, 0:00:00 day = d - oneday#2019-06-27 11:32:10.186535 2019-06-26 11:32:10.186535 ... 2019-06-21 11:32:10.186535 date_to = datetime.datetime(day.year, day.month, day.day)#2019-06-27 00:00:00 2019-06-26 00:00:00 ... 2019-06-21 00:00:00 lists.append(str(date_to)[0:10])#2019-06-27 2019-06-26 ... 2019-06-21 return lists
页面效果
总结
以上所述是小编给大家介绍的django项目用higcharts统计最近七天文章点击量,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!
转载请注明:谷谷点程序 » django项目用higcharts统计最近七天文章点击量